Практическое применение алкенов презентация. Применение алкенов

Практическое применение алкенов презентация. Применение алкенов
Практическое применение алкенов презентация. Применение алкенов

«Применение кислорода» - Врач беседует с больным по телефону. Кислород необходим практически всем живым существам. При работе в воде. Пожарный с автономным дыхательным аппаратом. Больной находится в специальном аппарате в кислородной атмосфере при пониженном давлении. Вне земной атмосферы человек вынужден брать с собой запас кислорода.

«Применение электролиза» - Электрохимический эквивалент и число Фарадея связаны соотношением. Гальваностегия – покрытие предметов неокисляющимся металлами для защиты от коррозии (Ni, Zn, Ag, Au, Cu). Электрический ток в жидкостях. Рафинирование меди. Второй закон электролиза. Проводящие. Получение алюминия. Непроводящие. 2. Гальваностегия.

«Применение воды» - Применение воды в промышленности. Молекула воды Н2О состоит из двух атомов водорода и одного атома кислорода. Вода в промышленности. Воды гидросферы используются, как. 1)сырьё 2)теплоноситель 3)транспортная система 4)растворитель 5)среда, в которую удаляются всевозможные отходы.

«Алкены» - Алкены – непредельные углеводороды. Каким лабораторным способом можно получить алкены? Лабораторный способ получения. Лабораторные. Учебная цель: Какова структурная формула первого представителя гомологического ряда алкенов? Какова общая формула алкенов? Какие способы получения алкенов вы знаете? Почему в отличие от алканов алкены в природе практически не встречаются?

«Применение углеводородов» - Производство пластмасс, каучуков, синтетических волокон, моющих средств и многих других веществ. Циклопропан используется для наркоза. Велико значение в медицине, парфюмерии и косметике. Проверь себя!!! Цели: Применение алканов. Соединения алканов применяются в качестве хладагентов в домашних холодильниках.

«Применение кислот» - При образовании сахара в молоке образуется молочная кислота. Азотная кислота. Угольная кислота. H2SO4. ДНК на службе человека. Кислоты в организме человека. ДНК является носителем генетической информации. Москва 2002. Царская водка: Серная кислота широко используется в промышленном производстве. Нуклеиновые кислоты.

Лист самоанализа учебной деятельности учащегося ___________ по теме «Получение, химические свойства и применение алкенов» Лист самоанализа учебной деятельности учащегося ___________ по теме «Получение, химические свойства и применение алкенов» Я ЗНАЮ ХОЧУ УЗНАТЬ ЧТО УЗНАЛ


Ответьте, пожалуйста, на следующие вопросы: 1. Какие углеводороды называются алкенами? 2. Какова общая формула алкенов? 3. Какова структурная формула первого представителя гомологического ряда алкенов? Назовите его. 4. Почему в отличие от алканов алкены в природе практически не встречаются? 5. Какие способы получения алкенов вы знаете? Каким лабораторным способом можно получить алкены? 6. Какие химические свойства обуславливает наличие кратной (двойной) связи в молекулах алкенов? 7. Для чего используют алкены?




ПРОМЫШЛЕННЫЙ СПОСОБ ПОЛУЧЕНИЯ КРЕКИНГ АЛКАНОВ АЛКАН АЛКАН + АЛКЕН С БОЛЕЕ ДЛИННОЙ С МЕНЕЕ ДЛИНОЙ С БОЛЕЕ ДЛИННОЙ С МЕНЕЕ ДЛИНОЙ УГЛЕРОДНОЙ УГЛЕРОДНОЙ УГЛЕРОДНОЙ УГЛЕРОДНОЙ ЦЕПЬЮ ЦЕПЬЮ ЦЕПЬЮ ЦЕПЬЮ ПРИМЕР: t= C t= C С 10 Н 22 C 5 H 12 + C 5 H 10 С 10 Н 22 C 5 H 12 + C 5 H 10 декан пентан пентен декан пентан пентен








ЛАБОРАТОРНЫЙ СПОСОБ ПОЛУЧЕНИЯ ДЕГИДРОГАЛОГЕНИРОВАНИЕ УДАЛИТЬ ВОДОРОД ГАЛОГЕН ДЕЙСТВИЕ УДАЛИТЬ ВОДОРОД ГАЛОГЕН ДЕЙСТВИЕПРИМЕР: спиртовой спиртовой H H раствор H H раствор Н-С – С-Н+KOH Н 2 С=СН 2 +KCl+H 2 O Н-С – С-Н+KOH Н 2 С=СН 2 +KCl+H 2 O Н Cl этен Н Cl этен хлорэтан (этилен) хлорэтан (этилен)




Реакции присоединения 1.Гидрирование. CН 2 = СН 2 + Н 2 СН 3 – СН 3 Этен этан Этен этан Условия реакции: катализатор – Ni, Pt, Pd 2.Галогенирование CН 2 = СН – СН 3 + Сl – Сl СН 2 – СН – СН 3 пропен Cl Cl Cl Cl1,2-дихлорпропан Реакция идёт при обычных условиях.


Электрофильное присоединение Н С С Н Cl δ+ Cl δ- Н С С Н + Cl + :Cl H 2 C CH 2 Cl Cl Молекула галогена не имеет собственного диполя, однако в близи π-электронов происходит поляризация ковалентной связи, благодаря чему галоген ведёт себя как электрофильный агент.


Реакции присоединения 3.Гидрогалогенирование СН 2 = СН – СН 2 – СН 3 + Н – СlCН 3 – СН – СН 2 – СН 3 СН 2 = СН – СН 2 – СН 3 + Н – СlCН 3 – СН – СН 2 – СН 3 Бутен-1 Cl Бутен-1 Cl 2-хлорбутан 2-хлорбутан 4.Гидратация CН 2 = СН – СН 3 + Н – ОН СН 3 – СН – СН 3 CН 2 = СН – СН 3 + Н – ОН СН 3 – СН – СН 3 пропен пропен ОН ОН пропанол-2 пропанол-2 Условия реакции: катализатор – серная кислота, температура. Присоединение молекул галогеноводородов и воды к молекулам алкенов происходит в соответствии с правилом В.В. Марковникова.


Гидрогалогенирование гомологов этилена ПравилоПравило В.В. Марковникова Правило Атом водорода присоединяется к наиболее гидрированному атому углерода при двойной связи, а атом галогена или гидроксогруппа – к наименее гидрированному. Атом водорода присоединяется к наиболее гидрированному атому углерода при двойной связи, а атом галогена или гидроксогруппа – к наименее гидрированному.


СХЕМЫ РЕАКЦИИ ПРИСОЕДИНЕНИЯ АЛКЕНРЕАГЕНТПРОДУКТ ВИД РЕАКЦИИ Применение реакции, её продуктов Н Н Н НН-С=С-Н + Н 2 Н Н Н Н Н-С - С-Н н н н нГИДРИРОВАНИЕ(ВОССТАНОВЛЕНИЕ) НЕ ИМЕЕТ ПРАКТИЧЕСКОГО ЗНАЧЕНИЯ Н Н Н НН-С=С-Н + Br 2 Н Н Н Н Н-С - С-Н? ? ? ?ГАЛОГЕНИРОВАНИЕ(БРОМИРОВАНИЕ) РАСПОЗНАВАНИЕ НЕПРЕ- ДЕЛЬНЫХ СОЕДИНЕНИЙ (ОБЕСЦВЕЧИВАНИЕ БРОМНОЙ ВОДЫ). ПОЛУЧЕНИЕ РАСТВОРИ- ТЕЛЯ. Н Н Н НН-С=С-Н + HCl Н Н Н Н Н-С - С-Н? ? ? ?ГИДРОГАЛОГЕНИРОВА-НИЕ(ГИДРОХЛОРИРОВАНИЕ) ПОЛУЧЕНИЕ ХЛОРЭТАНА, ИСПОЛЬЗУЕМОГО ДЛЯ МЕСТНОЙ АНАСТЕЗИИ, В КАЧЕСТВЕ РАСТВОРИ- ТЕЛЯ И В СЕЛЬСКОМ ХОЗЯЙСТВЕ ДЛЯ ОБЕЗЗАРАЖИВАНИЯ ЗЕРНОХРАНИЛИЩ Н Н Н НН-С=С-Н + H 2 O Н Н Н Н Н-С - С-Н? ? ? ?ГИДРАТАЦИЯ ПОЛУЧЕНИЕ ЭТИЛОВОГО СПИРТА (РАСТВОРИТЕЛЬ В МЕДИЦИНЕ, В ПРО- ИЗВОДСТВЕ СИНТЕТИ- ЧЕСКОГО КАУЧУКА).




РЕАКЦИИ ОКИСЛЕНИЯ МЯГКОЕ ОКИСЛЕНИЕ – ВЗАИМОДЕЙСТВИЕ С РАСТВОРОМ ПЕРМАНАГАНАТА КАЛИЯ МЯГКОЕ ОКИСЛЕНИЕ – ВЗАИМОДЕЙСТВИЕ С РАСТВОРОМ ПЕРМАНАГАНАТА КАЛИЯ (реакция Е.Е.Вагнера) (реакция Е.Е.Вагнера) Н 2 С=СН 2 + [O] + H 2 O H 2 C - CH 2 OH OH OH OH этиленгликоль этиленгликоль (этандиол-1,2) (этандиол-1,2) ! Качественная реакция на непредельность углеводорода – на кратную связь. ! Качественная реакция на непредельность углеводорода – на кратную связь.


1. Мягкое окисление алкенов водным раствором перманганата калия приводит 1. Мягкое окисление алкенов водным раствором перманганата калия приводит к образованию двухатомных спиртов (реакция Вагнера): к образованию двухатомных спиртов (реакция Вагнера): KMnO4 KMnO4 СН2=СН2 + [O] + H2O HO CH2 CH2 OH СН2=СН2 + [O] + H2O HO CH2 CH2 OH этилен этиленгликоль (этандиол) этилен этиленгликоль (этандиол) Полное уравнение реакции: Полное уравнение реакции: 3СН2=СН2 + 2KMnO 4 + 4H2O 3HO CH2 CH2 OH + 2KOH + 2MnO2 3СН2=СН2 + 2KMnO 4 + 4H2O 3HO CH2 CH2 OH + 2KOH + 2MnO2 Электронный баланс: Электронный баланс: 2 MnO4 + 2 H2O + 3e MnO2 + 4 OH восстановление 2 MnO4 + 2 H2O + 3e MnO2 + 4 OH восстановление 3 C2H4 + 2 OH 2e C2H4(OH)2окисление 3 C2H4 + 2 OH 2e C2H4(OH)2окисление 2 MnO4 + 4 H2O + 3 C2H4 2 MnO2 + 2 OH + 3 C2H4(OH)2 2 MnO4 + 4 H2O + 3 C2H4 2 MnO2 + 2 OH + 3 C2H4(OH)2 В ходе этой реакции происходит обесцвечивание фиолетовой окраски водного раствора KMnO4. Поэтому она используется как качественная реакция на алкены. В ходе этой реакции происходит обесцвечивание фиолетовой окраски водного раствора KMnO4. Поэтому она используется как качественная реакция на алкены.






РЕАКЦИЯ ПОЛИМЕРИЗАЦИИ Это процесс соединения одинаковых молекул в более крупные. ПРИМЕР: n CH 2 =CH 2 (-CH 2 -CH 2 -)n этилен полиэтилен этилен полиэтилен (мономер) (полимер) (мономер) (полимер) n – степень полимеризации, показывает число молекул, вступивших в реакцию -CH 2 -CH 2 - структурное звено


Реакции полимеризации (свободно-радикальное присоединение) Полимеризация – это последовательное соединение одинаковых молекул в более крупные. σ σ σ σ σ σ СН 2 = СН 2 + СН 2 = СН 2 + СН 2 = СН 2 + … π π π π π π σ σ σ σ σ σ – СН 2 – СН 2 – + – СН 2 – СН 2 – + – СН 2 – СН 2 – – СН 2 – СН 2 – + – СН 2 – СН 2 – + – СН 2 – СН 2 – … – СН 2 – СН 2 – СН 2 – СН 2 – СН 2 – СН 2 – … … – СН 2 – СН 2 – СН 2 – СН 2 – СН 2 – СН 2 – … Сокращённо уравнение этой реакции записывается так: n СН 2 = СН 2 (– СН 2 – СН 2 –) n Этен полиэтилен Этен полиэтилен Условия реакции: повышенная температура, давление, катализатор. Условия реакции: повышенная температура, давление, катализатор.


Применение этилена СвойствоПрименениеПример 1. Полимеризация Производство полиэтилена, пластмасс 2. Галогенирование Получение растворителей 3. Гидрогалогени- рование рование Для местная анестезия, получения растворите-лей, в с/х для обеззараживания зернохранилищ


СвойствоПрименениеПример 4. Гидратация Получение этилового спирта, используемого как растворитель, анти- септик в медицине, в производстве синтетического каучука 5. Окисление раствором KMnO 4 Получение антифризов, тормозных жидкостей, в производстве пластмасс 6. Особое свойство этилена: Этилен ускоряет созревание плодов


Практическая работа Практическая работа Получение и изучение свойств этилена. Получение и изучение свойств этилена. Цель работы: получить этилен и провести опыты, характеризующие его свойства. Цель работы: получить этилен и провести опыты, характеризующие его свойства. Оборудование и реактивы: спиртовка, спички, лабораторный штатив, винт, лапка, пробка с газоотводной трубкой, штатив с пробирками, фильтровальная бумага; этанол, речной песок, концентрированная серная кислота, раствор перманганата калия. Оборудование и реактивы: спиртовка, спички, лабораторный штатив, винт, лапка, пробка с газоотводной трубкой, штатив с пробирками, фильтровальная бумага; этанол, речной песок, концентрированная серная кислота, раствор перманганата калия. Порядок выполнения работы. Порядок выполнения работы. З а д а н и е 1. Получение этилена. З а д а н и е 1. Получение этилена. В целях безопасности работы с концентрированными веществами учителем заранее приготавливается смесь, состоящую из 2-3 мл этилового спирта и 6-9 мл концентрированной серной кислоты. Для того, чтобы избежать толчков жидкости при кипении, в смесь добавляется прокалённый речной песок. В целях безопасности работы с концентрированными веществами учителем заранее приготавливается смесь, состоящую из 2-3 мл этилового спирта и 6-9 мл концентрированной серной кислоты. Для того, чтобы избежать толчков жидкости при кипении, в смесь добавляется прокалённый речной песок. Закройте пробирку пробкой с газоотводной трубкой, закрепите её в штативе (см. рис. 1). Осторожно нагрейте. Закройте пробирку пробкой с газоотводной трубкой, закрепите её в штативе (см. рис. 1). Осторожно нагрейте. З а д а н и е 2. Химические свойства этилена. З а д а н и е 2. Химические свойства этилена. 1. Опустите конец газоотводной трубки поочерёдно в пробирку с раствором перманганата калия (ниже уровня раствора) (см. рис 1) и в пробирку с раствором брома. Что происходит с раствором перманганата калия? Что происходит с раствором брома? Сделайте вывод о непредельном характере этилена. 1. Опустите конец газоотводной трубки поочерёдно в пробирку с раствором перманганата калия (ниже уровня раствора) (см. рис 1) и в пробирку с раствором брома. Что происходит с раствором перманганата калия? Что происходит с раствором брома? Сделайте вывод о непредельном характере этилена. 2. Протрите конец газоотводной трубки фильтровальной бумагой, поверните трубку вверх и подожгите выделяющийся этилен. Каким пламенем горит этилен: светящимся, несветящимся или коптящим? Почему? 2. Протрите конец газоотводной трубки фильтровальной бумагой, поверните трубку вверх и подожгите выделяющийся этилен. Каким пламенем горит этилен: светящимся, несветящимся или коптящим? Почему? Приложение 4 Приложение 4 Рис. 1 Получение этилена и изучение его свойств. Рис. 1 Получение этилена и изучение его свойств.




Интересно… Великое удивление старого отшельника Великое удивление старого отшельника Многим памятна необыкновенная история семейства Лыковых, которое по религиозным мотивам удалилось от человеческого общества в глухую тайгу и прожило там, не видя людей, с 1936 года до начала 80-х г.г.. К этому стоит добавить, что глава семейства Карп Осипович Лыков и до отшельничества от самого рождения жил на староверческой заимке, с широким миром не общаясь. Многим памятна необыкновенная история семейства Лыковых, которое по религиозным мотивам удалилось от человеческого общества в глухую тайгу и прожило там, не видя людей, с 1936 года до начала 80-х г.г.. К этому стоит добавить, что глава семейства Карп Осипович Лыков и до отшельничества от самого рождения жил на староверческой заимке, с широким миром не общаясь. И вот – встреча с людьми! Много поразительных достижений вошло в человеческий обиход за эти долгие десятилетия, но что всё-таки более всего поразило старого отшельника? И вот – встреча с людьми! Много поразительных достижений вошло в человеческий обиход за эти долгие десятилетия, но что всё-таки более всего поразило старого отшельника? Журналист «Комсомольской правды» В. Песков, который рассказывал об этой семье на страницах газеты, отметил: «Из всего, что могло его поразить, на первое место надо поставить не электричество, не самолёт…не приёмник, из которого слышался «бабий греховный глас» Пугачёвой, поразил больше всего прозрачный пакет из полиэтилена. «Господи, что измыслили – стекло, а мнётся!» Журналист «Комсомольской правды» В. Песков, который рассказывал об этой семье на страницах газеты, отметил: «Из всего, что могло его поразить, на первое место надо поставить не электричество, не самолёт…не приёмник, из которого слышался «бабий греховный глас» Пугачёвой, поразил больше всего прозрачный пакет из полиэтилена. «Господи, что измыслили – стекло, а мнётся!» Пожалуй, выбор объекта для удивления нас, нынешних, разочарует. А между тем, всё дело в том, что мы, избалованные дети цивилизации, легко привыкаем к самым удивительным вещам. Стоит добавить, что в год, когда семья Лыковых ушла в тайгу, полиэтилена не только не было в помине, но даже сама принципиальная возможность его получения ставилась под сомнение Пожалуй, выбор объекта для удивления нас, нынешних, разочарует. А между тем, всё дело в том, что мы, избалованные дети цивилизации, легко привыкаем к самым удивительным вещам. Стоит добавить, что в год, когда семья Лыковых ушла в тайгу, полиэтилена не только не было в помине, но даже сама принципиальная возможность его получения ставилась под сомнение


О полиэтилене… Полиэтилен – довольно «старый» пластик. Исследователи фирмы JCJ в 1933 году подвергли сжатию под высоким давлением этилена в аппарате, полученном из Голландии. Они хотели изучить свойства этилена при высоком давлении, но вместо этого этилен заполимеризовался в полиэтилен. К сожалению, процесс полимеризации плохо воспроизводился; иногда полиэтилен получался; а иногда – нет. Тщательные исследования позволили обнаружить в реакционной камере очень маленькие трещинки. Они пропускали ровно столько воздуха, сколько надо, чтобы в камере началась полимеризация – благодаря содержащемуся в воздухе кислороду. Понадобилось много усилий, чтобы разработать промышленный процесс полимеризации этилена: если кислорода было слишком мало, полимеризация не шла, а если слишком много – вся установка взлетала на воздух. Полиэтилен – довольно «старый» пластик. Исследователи фирмы JCJ в 1933 году подвергли сжатию под высоким давлением этилена в аппарате, полученном из Голландии. Они хотели изучить свойства этилена при высоком давлении, но вместо этого этилен заполимеризовался в полиэтилен. К сожалению, процесс полимеризации плохо воспроизводился; иногда полиэтилен получался; а иногда – нет. Тщательные исследования позволили обнаружить в реакционной камере очень маленькие трещинки. Они пропускали ровно столько воздуха, сколько надо, чтобы в камере началась полимеризация – благодаря содержащемуся в воздухе кислороду. Понадобилось много усилий, чтобы разработать промышленный процесс полимеризации этилена: если кислорода было слишком мало, полимеризация не шла, а если слишком много – вся установка взлетала на воздух. Многие историки считают, что успех во Второй мировой войне частично принадлежит полиэтилену. Этот пластик является чудесным изолятором для высокочастотных устройств. Такой материал был крайне необходим при конструировании только что изобретённых радаров, благодаря которым можно было следить за курсом немецких бомбардировщиков и поднимать по тревоге истребители. Без полиэтилена не было бы радаров, без радаров не было бы заблаговременного сигнала воздушной тревоги, не было бы успешной обороны. Многие историки считают, что успех во Второй мировой войне частично принадлежит полиэтилену. Этот пластик является чудесным изолятором для высокочастотных устройств. Такой материал был крайне необходим при конструировании только что изобретённых радаров, благодаря которым можно было следить за курсом немецких бомбардировщиков и поднимать по тревоге истребители. Без полиэтилена не было бы радаров, без радаров не было бы заблаговременного сигнала воздушной тревоги, не было бы успешной обороны.


Интересно… Этилен – вредитель Этилен – вредитель Во многих странах большое количество урожая пропадает из-за увядания плодов. Например, в США количество увядших, а значит, пропавших фруктов, составляет четверть всего урожая. Причина этого состоит в том, что фрукты при созревании выделяют газ этилен, который способствует их созреванию. Когда этого газа становится больше определённого количества, процесс созревания намного ускоряется как на дереве, так и в хранилище. Быстро созревший, а возможно, и уже увядший плод приводит к быстрому созреванию и даже к порче (к увяданию) всего урожая. Во многих странах большое количество урожая пропадает из-за увядания плодов. Например, в США количество увядших, а значит, пропавших фруктов, составляет четверть всего урожая. Причина этого состоит в том, что фрукты при созревании выделяют газ этилен, который способствует их созреванию. Когда этого газа становится больше определённого количества, процесс созревания намного ускоряется как на дереве, так и в хранилище. Быстро созревший, а возможно, и уже увядший плод приводит к быстрому созреванию и даже к порче (к увяданию) всего урожая. Американские фермеры, спасая урожай от порчи, пользуются созданным несколько лет назад устройством. Оно представляет собой картридж, заполненный перманганатом калия, который поглощает этилен и предотвращает процесс увядания плодов. Американские фермеры, спасая урожай от порчи, пользуются созданным несколько лет назад устройством. Оно представляет собой картридж, заполненный перманганатом калия, который поглощает этилен и предотвращает процесс увядания плодов.


Решите задачу Найдите молекулярную формулу углеводорода, массовая доля углерода в котором составляет Найдите молекулярную формулу углеводорода, массовая доля углерода в котором составляет 85,7 %. Относительная плотность этого углеводорода по азоту равна 2. При сжигании углеводорода массой 0,7 г образовались оксида углерода (IV) и вода количеством вещества по 0,05 моль каждое. Относительная плотность паров этого вещества по азоту равна 2,5. Найдите молекулярную формулу алкена. При сжигании углеводорода массой 0,7 г образовались оксида углерода (IV) и вода количеством вещества по 0,05 моль каждое. Относительная плотность паров этого вещества по азоту равна 2,5. Найдите молекулярную формулу алкена. При сжигании углеводорода массой 11,2 г получили 35,2 г оксида углерода (IV) и 14,4 г воды. Относительная плотность углеводорода по воздуху 1,93. Найдите молекулярную формулу вещества. При сжигании углеводорода массой 11,2 г получили 35,2 г оксида углерода (IV) и 14,4 г воды. Относительная плотность углеводорода по воздуху 1,93. Найдите молекулярную формулу вещества.


Проверь М(С х Н Y)=56 г/моль m(С х Н Y)=56 г m(С)=48 г m(Н)=8 г x: y = = 4: 8 Ответ: С 4 Н 8 М(С х Н Y)=70 г/моль n(Н)=0,1 моль n(С)=0,05 моль x: y = 0,05: 0,1 = 1: 2 Простейшая формула СН 2 Истинная – С 5 Н 10 Ответ: С 5 Н 10 М(С х Н Y)=56 г/моль m(С х Н Y)=11,2 г n(СО 2)= 0,8 моль n(Н 2 О)=0,8 моль n(С)= 0,8 моль n(Н)=1,6 моль x: y = 0,8: 1,6 = 1: 2 Простейшая формула СН 2 Истинная – С 4 Н 8 Ответ: С 4 Н 8 Задача 2 Задача 3Задача 1


Используя правило Марковникова, напишите уравнения следующих реакций присоединения: Используя правило Марковникова, напишите уравнения следующих реакций присоединения: а) СН 3 -СН=СН 2 + НСl ? б) СН 2 =СН-СН 2 -СН 3 + НBr ? В) СН 3 -СН 2 -СН=СН 2 + НОН?
38
СИНКВЕЙН 1 строка – имя существительное (тема синквейна) 2 строка – два прилагательных (раскрывающие тему синквейна) (раскрывающие тему синквейна) 3 строка – три глагола (описывают действия) 4 строка – фраза или предложение (высказывают своё отношение к теме) (высказывают своё отношение к теме) 5 строка – синоним (слово-резюме)




ДОМАШНЕЕ ЗАДАНИЕ Оценка «3»: параграф 4, ТПО стр, 5-7 Оценка «4»: Хомченко И.Г.: Оценка «5»: Составить цепочку превращений, используя материал по темам «Алканы» и «Алкены»


Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Задание на повторение: а) H 2 C = CH – CH - CH 2 - CH 3 б) H 3 C - CH = C - CH 2 - CH 3 CH 3 CH 3 3 – метилпентен – 1 3 – метилпентен – 4 в) H 2 C = CH – CH - CH 2 – CH 2 - CH 3 г) H 3 C – CH 2 – CH – CH 2 - CH 3 CH 3 CH 3 3 – метилгексен – 1 3 - метилпентан

«Получение, свойства и применение алкенов» Тема урока:

Получение алкенов Промышленные способы крекинг нефтепродуктов C 16 H 34 → C 8 H 18 + C 8 H 16 гексадекан октан октен дегидрирование алканов CH 3 – CH 3 CH 2 = CH 2 + H 2 этан этилен 550 0 С, Ni

Получение алкенов Лабораторные способы дегидратация спиртов C 2 H 5 OH CH 2 = CH 2 + H 2 O дегалогенирование дигалогеналканов CH 3 – CHBr – CHBr – CH 3 + Zn → CH 3 – CH = CH – CH 3 + ZnBr 2 2,3 – дибром бутан бутен - 2 дегидрогалогенирование галогеналканов CH 3 – CHBr – CH 2 – CH 3 + NaOH CH 3 – CH = CH – CH 3 + NaBr + H 2 O 2 – бромбутан бутен - 2 t > 140 0 С, H 2 SO 4 (конц) спирт, t

Химические свойства алкенов Реакции присоединения Галогенирование (обесцвечивание бромной воды) Гидрирование Гидратация Гидрогалогенирование CH 2 = CH 2 + Br 2 → CH 2 Br – CH 2 Br 1,2 – дибромэтан CH 2 = CH 2 + H 2 H 3 C – CH 3 э тан катализатор CH 2 = CH 2 + H 2 O CH 3 – CH 2 OH этиловый спирт t , p , катализатор CH 2 = CH 2 + HBr → CH 3 – CH 2 Br бромэтан CH 2 = CH 2 + HCl → CH 3 – CH 2 Cl хлорэтан

Химические свойства алкенов Реакции окисления Горение на воздухе Мягкое окисление (обесцвечивание раствора K M nO 4) Частичное окисление этилена кислородом воздуха CH 2 = CH 2 + 3O 2 → 2CO 2 + 2H 2 O CH 2 = CH 2 + [O] + H 2 O → HO – CH 2 – CH 2 – OH э тиленгликоль 2 CH 2 = CH 2 + O 2 → 2CH 2 – CH 2 O о ксид этилена

Химические свойства алкенов Реакции полимеризации n CH 2 = CH 2 (- CH 2 – CH 2 -) n этилен полиэтилен t , p , катализатор

Физические свойства алкенов Этилен – бесцветный газ, почти без запаха, немного легче воздуха, плохо растворим в воде, растворим в спирте и диэтиловом эфире Формула - название t кип., 0 С Агрегатное состояние C 2 H 4 – этилен -103,8 газы C 3 H 6 - пропилен -47,7 C 4 H 8 - бутен -6,3 (бутен-1) C 5 H 10 - пентен +30,1 (пентен-1) жидкие C 6 H 12 - гексен +63,5 C 7 H 14 - гептен +93,6 C 18 H 36 - октадецен C 19 H 38 - нонадецен твердые При увеличении молекулярной массы соединений закономерно повышаются температуры кипения и плавления

Применение алкенов н. Этилен: исходное вещество для производства этанола, этиленгликоля, эпоксидов, дихлорэтана, полиэтилена (упаковочная пленка, посуда, трубы, электроизоляционные материалы). Пропилен: глицерин, ацетон, изопропанол, растворители, полипропилен.

И для этана, и для этилена характерны: реакции хлорирования; sp 3 – гибридизация атомов углерода в молекуле; наличие π-связи в молекулах; реакции гидратации; горение на воздухе; взаимодействие с раствором KMnO 4 ; малая растворимость в воде; газообразное состояние. Задание на закрепление Ответы: 1, 5, 7, 8

Цель урока: рассмотреть различные способы получения алкенов, их физические и химические свойства и применение через работу с различными источниками информации.

Урок: Интересно Скучно Безразлично Я на уроке: Работал Отдыхал Помогал другим ИТОГ: Понял материал Узнал больше, чем знал Не понял Оцени себя на уроке

Спасибо за урок!


По теме: методические разработки, презентации и конспекты

Полиэтилен, его свойства и применение. 10 класс

Полиэтилен, его свойства и применение.Полиэтилен и его свойства(– СН2 – СН2 –)n(– СН2 – СН2 –)50-70 Жидкость, которая используется как смазочное масло(– СН2 – СН2 –)100-120 Твердое бе...

Тип урока: урок-смотр знаний.В начале урока организовано повторение небольшого блока теоретического материала, на следующем этапе проводится графический диктант и самостоятельная работа,завершается ур...

Презентация к уроку "Исследование капиллярных свойств столовых салфеток". Урок-контрольная закупка.

Урок- исследование позволяет обобщить знания учащихся по пройденному материалу, учит анализировать, сравнивать результаты экспериментов и делать выводы....


  • Понятие о непредельных углеводородах.
  • Характеристика двойной связи.
  • Изомерия и номенклатура алкенов.
  • Физические свойства.
  • Получение алкенов.
  • Свойства алкенов.
  • Применение алкенов.

Понятие об алкенах

  • Алкены – углеводороды, содержащие в молекуле одну двойную связь между атомами углерода, а качественный и количественный состав выражается общей формулой

С n Н 2n , где n 2 .

  • Алкены относятся к непредельным углеводородам, так как их молекулы содержат меньшее число атомов водорода, чем насыщенные.

Характерис-тика двойной связи (С=С)

  • Вид гибридизации –
  • Валентный угол –
  • Длина связи
  • Строение ─
  • Вид связи –
  • По типу перекрывания –

плоскостное

ковалентная

неполярная




Гомологи-ческий ряд алкенов

Общая формула С n Н 2n

Эт ен

Проп ен

Бут ен

Пент ен

Гекс ен

Гепт ен

  • Эт ен Проп ен Бут ен Пент ен Гекс ен Гепт ен
  • Эт ен Проп ен Бут ен Пент ен Гекс ен Гепт ен
  • Эт ен Проп ен Бут ен Пент ен Гекс ен Гепт ен
  • Эт ен Проп ен Бут ен Пент ен Гекс ен Гепт ен

C 2 H 4

C 3 H 6

C 4 H 8

C 5 H 10

C 6 H 12

C 7 H 14


Для алкенов возможны два типа изомерии:

1-ый тип – структурная изомерия :

  • углеродного скелета
  • положения двойной связи
  • межклассовая

2-ой тип – пространственная изомерия :

геометрическая

Изомерия алкенов


Примеры изомеров углеродного скелета (С 5 Н 10)

1 2 3 4 1 2 3 4 СН 2 = С – СН 2 – СН 3 СН 2 = СН – СН – СН 3

СН 3 СН 3

2-метилбутен-1 3-метилбутен-1

1 2 3 4

СН 3 – С = СН – СН 3

СН 3 2-метилбутен-2


Примеры изомеров положения двойной связи (С 5 Н 10)

1 2 3 4 5 СН 2 = СН – СН 2 – СН 2 – СН 3

пентен-1

1 2 3 4 5

СН 3 – СН = СН – СН 2 – СН 3

пентен-2


Межклас-совая изомерия

АЛКЕНЫ ЯВЛЯЮТСЯ МЕЖКЛАССОВЫМИ ИЗОМЕРАМИ ЦИКЛОАЛКАНОВ

Н 2 С – СН 2 СН – СН 3

Н 2 С – СН 2 Н 2 С СН 2

Циклобутан Метилциклопропан

СН 3 = СН – СН 2 – СН 3 - бутен-1

Циклобутан и метилциклопропан являются изомерами бутена, т. к. отвечают общей формуле С 4 Н 8 .

С 4 Н 8


Геометрические (оптические) изомеры бутена С 4 Н 8

Цис-изомер

Транс-изомер


1

5

4

3

2

СН 3 - СН 2 - СН - СН = СН 2

СН 3 - СН = СН - СН - СН 2 - СН 3

СН 2 - СН 2 - СН 2 - СН 3

3 - метил пент е н - 1

2

3

1

4

6

7

8

5

4 - этил окт е н - 2


Физические свойства алкенов

  • Алкены плохо растворимы в воде, но хорошо растворяются в органических растворителях.
  • С увеличением молекулярной массы алкенов, в гомологическом ряду, повышаются температуры кипения и плавления, увеличивается плотность веществ.

С 2 – С 4 - газы

С 5 – С 16 - жидкости

С 17 - твёрдые вещества


СПОСОБЫ

ПОЛУЧЕНИЯ АЛКЕНОВ

ЛАБОРАТОРНЫЕ

ПРОМЫШЛЕННЫЕ

ДЕГИДРАТАЦИЯ

СПИРТОВ

КРЕКИНГ

АЛКАНОВ

ДЕГАЛОГЕНИРОВАНИЕ

ДЕГИДРИРОВАНИЕ

АЛКАНОВ

ДЕГИДРО-

ГАЛОГЕНИРОВАНИЕ


ПРОМЫШЛЕННЫЙ СПОСОБ ПОЛУЧЕНИЯ

КРЕКИНГ АЛКАНОВ

ПРИМЕР:

t=400-700C

С 10 Н 22 C 5 H 12 + C 5 H 10 дек ан пент ан пент ен

АЛК АН → АЛК АН + АЛК ЕН

С БОЛЕЕ ДЛИННОЙ С МЕНЕЕ ДЛИНОЙ

УГЛЕРОДНОЙ УГЛЕРОДНОЙ

ЦЕПЬЮ ЦЕПЬЮ


ПРОМЫШЛЕННЫЙ СПОСОБ ПОЛУЧЕНИЯ

АЛК АН → АЛК ЕН + Н 2

ПРИМЕР:

Ni, t= 5 00C

Н 3 С - СН 3 →Н 2 С = СН 2 + Н 2

эт ан эт ен

(эт илен )

ДЕ ГИДРИРОВАНИЕ

АЛКАНОВ


ЛАБОРАТОРНЫЙ СПОСОБ ПОЛУЧЕНИЯ

СПИРТ →АЛК ЕН +ВОДА

ПРИМЕР:

условия: t≥ 14 0C , Н 2 SO 4 (конц.)

Н Н

Н-С – С-Н →Н 2 С = СН 2 + Н 2 О

Н ОН эт ен

(эт илен )

ДЕ ГИДРАТАЦИЯ

СПИРТОВ


ДЕ ГАЛОГЕН ИРОВАНИЕ

ПРИМЕР:

t

Н 2 С – СН 2 + Zn Н 2 С = СН 2 + Zn Br 2

Br Br эт ен

1,2-дибромэт ан (эт илен )


ЛАБОРАТОР-НЫЙ СПОСОБ ПОЛУЧЕНИЯ

ДЕ ГИДРО ГАЛОГЕН ИРОВАНИЕ

УДАЛИТЬ ВОДОРОД ГАЛОГЕН ДЕЙСТВИЕ

ПРИМЕР:

условие: спиртовой раствор

H H

Н-С–С-Н + KOH → Н 2 С = СН 2 + K Cl + H 2 O

Н Cl эт ен

хлорэт ан (эт илен )


Механизм реакций присоедине-ния алкенов

  • Электрофильное присоединение: разрыв π -связи протекает по гетеролитическому механизму, если атакующая частица является электрофилом.
  • Свободно-радикальное присоединение: разрыв связи протекает по гомолитическому механизму, если атакующая частица является радикалом.

π -связь является донором электронов, поэтому она легко реагирует с электрофильными реагентами.


СХЕМЫ РЕАКЦИИ ПРИСОЕДИНЕНИЯ

АЛКЕН

РЕАГЕНТ

ПРОДУКТ

ВИД РЕАКЦИИ

Применение реакции, её продуктов

ГИДРИРОВАНИЕ

(ВОССТАНОВЛЕНИЕ)

НЕ ИМЕЕТ ПРАКТИЧЕСКОГО ЗНАЧЕНИЯ

ГАЛОГЕНИРОВАНИЕ

(БРОМИРОВАНИЕ)

РАСПОЗНАВАНИЕ НЕПРЕ-ДЕЛЬНЫХ СОЕДИНЕНИЙ (ОБЕСЦВЕЧИВАНИЕ БРОМНОЙ ВОДЫ).

ПОЛУЧЕНИЕ РАСТВОРИ-ТЕЛЯ.

ГИДРОГАЛОГЕНИРОВА-

(ГИДРОХЛОРИРОВАНИЕ)

ПОЛУЧЕНИЕ ХЛОРЭТАНА, ИСПОЛЬЗУЕМОГО ДЛЯ МЕСТНОЙ АНАСТЕЗИИ, В КАЧЕСТВЕ РАСТВОРИ-ТЕЛЯ И В СЕЛЬСКОМ ХОЗЯЙСТВЕ ДЛЯ ОБЕЗЗАРАЖИВАНИЯ ЗЕРНОХРАНИЛИЩ

ГИДРАТАЦИЯ

ПОЛУЧЕНИЕ ЭТИЛОВОГО СПИРТА (РАСТВОРИТЕЛЬ В МЕДИЦИНЕ, В ПРО-ИЗВОДСТВЕ СИНТЕТИ-ЧЕСКОГО КАУЧУКА).


Это процесс соединения одинаковых молекул в более крупные.

ПРИМЕР:

n CH 2 =CH 2 (-CH 2 -CH 2 -)n

этилен поли этилен

(мономер) (полимер)

n – степень полимеризации, показывает число молекул, вступивших в реакцию

-CH 2 -CH 2 - структурное звено

РЕАКЦИЯ ПОЛИМЕРИЗАЦИИ


РЕАКЦИИ ОКИСЛЕ-НИЯ

ГОРЕНИЕ АЛКЕНОВ

ПРИМЕР:

2 Н 6 + 7О 2 4СО 2 + 6Н 2 О


РЕАКЦИИ ОКИСЛЕ-НИЯ

Реакция Е.Е.Вагнера

МЯГКОЕ ОКИСЛЕНИЕ – ВЗАИМОДЕЙСТВИЕ С РАСТВОРОМ ПЕРМАНАГАНАТА КАЛИЯ

Н 2 С=СН 2 + [O] + H 2 O H 2 C - CH 2

OH OH

этиленгликоль

(этандиол-1,2)

! Качественная реакция на непредельность углеводорода

на кратную связь.


Применение этилена

Свойство

Применение

1 . Полимеризация

Производство полиэтилена, пластмасс

2. Галогенирование

Получение растворителей

3. Гидрогалогени-

Для местная анестезия, получения растворите-лей, в с/х для обеззараживания зернохранилищ


Свойство

4. Гидратация

Применение

5. Окисление раствором KMnO 4

Получение этилового спирта, используемого как растворитель, анти-септик в медицине, в производстве синтетического каучука

6. Особое свойство этилена:

Получение антифризов, тормозных жидкостей, в производстве пластмасс

Этилен ускоряет созревание плодов


  • Алкены – непредельные углеводороды, в молекулах которых имеется одна двойная связь. Атомы углерода находятся в состоянии sp 2 - гибридизации. Общая формула – С n H 2n . В названии алкенов используется суффикс – ен.
  • Для алкенов характерны: структурная изомерия углеродной цепи, изомерия положения двойной связи, изомерия между классами и пространственная изомерия (геометрическая).
  • Алкены обладают большой химической активностью. За счёт наличия π -связи алкены вступают в реакции присоединения, окисления, полимеризации.

Назовите следующие алкены

1 2 3 4 5 6

а) СН 3 С СН СН 2 СН СН 3

СН 3 СН 3

б) Н 3 С СН 2 СН 2 СН 3

С С

Н Н

в) СН 3 СН 2 С СН 2

СН 3 СН СН 2 СН 3

а) 2,5-диметилгексен-2

б) цис-изомер-гексен-2

в) 3-метил-2-этилпентен-1


Используя правило Марковникова, напишите уравнения следующих реакций присоединения:

а) СН 3 -СН=СН 2 + НС l ?

б) СН 2 =СН-СН 2 -СН 3 + Н Br ?

В) СН 3 -СН 2 -СН=СН 2 + НОН ?

Ответы: а) СН 3 -СН=СН 2 + НС l  СН 3 -СН Cl- СН 3

б) СН 2 =СН-СН 2 -СН 3 + Н Br  СН 3 -СН Br -СН 2 -СН 3

в) СН 3 -СН 2 -СН=СН 2 + НОН  СН 3 -СН 2 -СН-СН 3


Оценка «3»: параграф 4, ТПО стр. 24-25, № 5-7

Оценка «4»: Хомченко И.Г.: 20.21

Оценка «5»: Составить цепочку превращений, используя материал по темам «Алканы» и «Алкены»

ДОМАШНЕЕ ЗАДАНИЕ


Изомерия и номенклатура алкенов . 4. Физические свойства. 5. Получение алкенов . 6. Свойства алкенов . 7. Применение алкенов . Понятие об алкенах Алкены – углеводороды, содержащие... C7H14 Этен Пропен Бутен Пентен Гексен Гептен Изомерия алкенов Для алкенов возможны два типа изомерии: 1-ый тип – ...

Характеристика двойной связи. Изомерия и номенклатура алкенов . Получение алкенов . Свойства алкенов . Решите задачу Найдите молекулярную формулу углеводорода, ... формула СН2 Истинная – С4Н8 Ответ: С4Н8 Понятие об алкенах Алкены – углеводороды, содержащие в молекуле одну двойную связь...

Фізичні властивості. 5. Добування алкен ів. 6. Властивості алкен ів. 7. Застосування алкен ів. Поняття про алкени ... Бутен Пентен Гексен Гептен Ізомерія алкен ів Для алкен ів можливі два види ізомерії: ... температури кипіння і плавлення. СПОСОБИ ДОБУВАННЯ АЛКЕН ІВ ЛАБОРАТОРНІ ПРОМИСЛОВІ КРЕКІНГ АЛКАН...

Дигалогеналканов Химические свойства реакции замещения алканы алкены алкины галогенирование нитрование присоединения гидрирование гидрирование галогенирование... гидратация отщепления горение дегидрирование гидратация Применение алканы алкены алкины топливо горючее для дизельных и...

О этиленовых углеводородах. Узнать особенности строения алкенов , общую формулу алкенов , физические и химические свойства. Уметь... , четыре, Дышим глубже, машем шире… Химические свойства алкенов Электрофильное присоединение (гидрирование, галогенирование, гидрогалогенирование, гидратация) ...

Презентация «Физические и химические...

Случае правильного ответа вы перейдете на другой уровень!!! Что знаем? АЛКЕНЫ Строение: cигма- и пи-связи, Типы связей120°, уголгибридизация- ... ответа вы перейдете на другой уровень!!! Характерные типы реакций алкенов на примере ЭТИЛЕНА - осуществить реакцию Определите реагенты в реакциях...

алканы алкены алкины алкадиены циклоа...

27. Учитель Гришковец И.А. Углеводороды: алканы СnH2n+2 алкены СnH2n алкины СnH2n-2 алкадиены циклоалканы СnH2n арены СnH2n-6 ... связей Реакции присоединения Реакции замещения Реакция полимеризации Реакция горения Алкены Алкины Алкадиены Циклоалканы Арены Используемые ресурсы: alhimic.ucoz.ru ...

Образование химических связей в алкан...

Образование химических связей в алканах, алкенах , алкинах, ароматических углеводородах. Типы гибридизации. Лекция 2 ... . Образование химических связей. Алканы. Образование химических связей. Алкены . Строение молекулы. Алкены .Образование и разрыв химических связей. Алкины. Строение молекулы. ...